C.U.SHAH UNIVERSITY Summer Examination-2017

Subject Name : Topology

	Subject Code : 4SC06TOC1			Branch :B.Sc. (Mathematics)				
	Semester : 6Date :19/04/2017Time: 2:30 To 5:30Marks :70Instructions:(1) Use of Programmable calculator & any other electronic instrument is prohibited.(2) Instructions written on main answer book are strictly to be obeyed.(3) Draw neat diagrams and figures (if necessary) at right places.(4) Assume suitable data if needed.							
Q-1	a)	Attempt the following of Define: Indexed set.	uestions:			(14) (01)		
	b)	b) Define: Trivial topology.				(01)		
	 c) Give an example of countable set and uncountable set? d) True/false: Intersection of two topologies is also topology. e) Define : s-topology f) Give an examples of open set in ℝ with usual topology. 					(01) (01) (01) (01)		
	g)					(01)		
	h)					(01)		
	i)	Define: Compact space.				(01)		
	j)	Define: T_0 – space.				(01)		
	k)	Write the closer of the se	$A = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{4}\}$	}.		(01)		
	l) m) n)	What do you mean by de	nse set?			(01) (01) (01)		
Attempt any four questions from Q-2 to Q-8.								
Q-2	a)	Attempt all questions Define: Topological space onX.		er the following collect	ions are topology	(14) (06)		
	b) c)	(1) $X = \{a, b\}$ and τ (2) $X = \{1, 2, 3\}$ a Define Co – finite topolo is topological space when If X is any nonempty set of such a topology?	and $\tau = \{\emptyset, \{1\}\}$ gy. If X is none $\epsilon \tau$ is co -finite	mpty set then prove the topology on X .		(05) (03)		

Q-3	a)	Attempt all questions a) If $X = \mathbb{R}$ then show that the collection	
		$\tau = \{ U \subseteq \mathbb{R} \mid x \in U \exists \varepsilon > 0 \ \exists (x - \varepsilon, x + \varepsilon) \subseteq U \} \cup \{ \emptyset \} \text{ is topology on }$	
	b)	What do you mean by aclosed set? Prove that finite union of closed set is closed.	(05)
	c)	 Which of the following is open, closed or neither open nor closed set ? (1) (1,2) (2) {1,2} (3) ℝ - ℚ 	(03)
Q-4		Attempt all questions	(14)
	a)	Define: Disconnected set. If (X, τ) is topological space then prove that X is disconnected iff $\exists A \subseteq X \ni A$ is both open and closed.	(06)
	b)	▲	(05)
	c)	I	(03)
Q-5		$\tau = \{ U \subseteq N / U = \{ m, m + 1, m + 2, \}, m \in N \} \cup \{ \emptyset \}$ is topology on N Attempt all questions	(14)
Q-3	a)	Define: Closer of set. Prove that	(07)
		(i) \overline{A} is smallest closed set containing A.	
	h)	(ii) A is closed if and only if $\overline{A} = A$. Prove that $\overline{A \cup B} = \overline{A} \cup \overline{B}$. Is it true that $\overline{A \cap B} = \overline{A} \cap \overline{B}$? Justify your answer.	(07)
Q-6	~)	Attempt all questions	(14)
	a)	Define: Homeomorphism. Prove that homeomorphism is an equivalence relation.	(07)
		Define: Continuous function. If $X = \{a, b, c\}, \tau_1 = \{\emptyset, X, \{a\}, \{b, c\}\}$ and $Y = \{1, 2, 3, 4\}, \tau_2 = \{\emptyset, Y, \{4\}, \{1, 2, 3\}\}$ also define a map $f: (X, \tau_1) \rightarrow (Y, \tau_2)$ Such that $f(a) = 4$, $f(b) = 2$, $f(c) = 3$ then show that f is continuous function.	(07)
	c)	What is hereditary property? Is openness of subset hereditary property of topological space?	(02)
Q-7	、	Attempt all questions	(14)
	a)	Prove that any closed subset of a compact space is compact.	(06)
	b) c)	Prove that continuous image of a compact space is compact. If (X, τ) and (X, τ^*) are two topological spaces such that τ^* is finer than τ and	(05) (03)
	C)	(X, τ) is a T_2 space then prove that (X, τ^*) is T_2 space.	(00)
0.0			(14)
Q-8	a)	Attempt all questions State and prove Heine - Borel theorem.	(14) (07)
	b)	Prove that every subspace of T_2 space is T_2 space.	(04)
	c)	Show that R is T_1 space with usual topology.	(03)

Page 2 || 2

